
Utrecht University, Game and Media Technology

Virtual Characters and Dynamic
Fluid Interactions

Simulation methods for creating convincing bleeding e�ects in real-time

ing. R. van Oeveren, 3788172

April 2014

Supervised by dr. N.G. Pronost

Acknowledgements

We would like to thank a couple of persons whose input proved invaluable for this experimentation project.
Foremost, the continous support, feedback and advice from dr. Nicolas Pronost has helped greatly in developing
the methods proposed in this report. Furthermore, the author of the �uid simulation library used in our
framework, Jackson Lee, has been very forthcoming with implementation details and code improvements.
Last but not least we would like to thank Selma Hilgersom for all her support, and the �nal revision+editting
that has certainly improved the quality of this report.

Contents

1 Introduction 4

2 Background 5
2.1 Smoothed Particle Hydrodynamics . 5
2.2 Reference work . 6

2.2.1 Particle Emitters . 6
2.2.2 Particles and Motion Tracking . 6
2.2.3 Fluid Rendering . 7

3 Experiment Setup 8
3.1 General Description . 8
3.2 Implementaton Details . 8

3.2.1 Implementation Framework . 8
3.2.2 Virtual Character Mesh . 9
3.2.3 Collision Shapes . 9
3.2.4 Emitter Placement . 9
3.2.5 Fluid E�ect Strategies . 10
3.2.6 Fluid Rendering . 10

3.3 Simulation Setup . 11
3.3.1 Pipeline and work�ow . 11
3.3.2 Parameters and settings . 12

4 Experiments 13
4.1 Bleeding with Adhesion Force . 13

4.1.1 Functions and Distributions . 14
4.1.2 Neighbour Scaling . 18
4.1.3 Surface Tension . 19

4.2 Animated meshes and bleeding . 20
4.3 Di�erentiated �uid sources . 21

4.3.1 Super�cial and deep cuts . 21
4.3.2 Puncturing . 22

4.4 Optimized Particle Spawning . 23
4.5 Starting Velocities . 23

4.5.1 Gushing E�ect . 24
4.6 Performance Analysis . 25

5 Conclusions 27

6 Future Work 28

3

1 Introduction

This report describes the experimentation project undertaken by Reinier van Oeveren, as part of the master
programme Game and Media Technology at Utrecht University. The focus of the experiments is real-time
interaction between virtual characters and physics-based �uids, with an emphasis on simulating bleeding
e�ects. The main goal of the experiments is to determine a suitable framework for the �uid simulations and
obtaining the parameters, physical entities (e.g. forces) and interactions needed to achieve speci�c bleeding
e�ects. The bleeding e�ects we want to achieve are (deep) cuts and puncture wounds (such as bullet wounds).
Simulating convincing and realistic bleeding e�ects can be useful in many applications, ranging from (serious)
games to virtual reality systems and even animated movies. The main criteria for the e�ects we attempt
to achieve is how natural they look compared to their real-life counterparts, while taking into account the
(real-time) performance of the methods and techniques behind the e�ects.

As we show in this report, creating convincing �uid e�ects poses some challenges that must be overcome. The
main di�culties for this project are correctly detecting collisions between the �uid and the virtual character
and determining methods that enhance the realistic behavior of the bleeding e�ects without great loss of
performance. To enhance the �uid behavior we propose an adhesion force method that aims at reproducing
the tendency of �uids to stick to the virtual character. Additionally, we propose several methods that increase
the natural appearance of the bleeding e�ects based on the type of wound that is being simulated. A small
portion of this report is dedicated to �uid rendering, although this is not the main focus of the project.

4

2 Background

Computational �uid dynamics is a well-known research topic within the �eld of computer graphics. The
performance of computer hardware has greatly increased over the last decade. Especially with the introduction
of graphics processing units (GPUs) and the subsequent increase in computational capabilities, more recently
developed �uid simulation methods have taken a vast leap forwards in terms of realistic visual representations
compared to older methods. Fluid simulations performed in computer graphics range heavily in complexity,
from relatively simple animated particle systems to complex physics-based models. For our experiments we will
use the same physics-based �uid simulation method that was also used in the recently published paper by Xu
et al. [1]. Their work focuses on simulating �uid behaviour that is driven by character motion. We use ideas
and techniques from this paper as a reference for our experiments with the aim to develop new methods that
build upon the work in the reference paper. The main goal is to incorporate actual collisions between the �uid
and virtual characters and to experiment with methods that improve the visual quality of the �uid behaviour
as it interacts with the virtual character. This chapter provides the necessary background information on the
�uid simulation technique and methods proposed in the reference paper.

2.1 Smoothed Particle Hydrodynamics

Traditional particle systems are mainly used in real-time applications, since they only consider approximate
and independent particle motion. Traditional particle systems involve substantially less computational costs
compared to physics-based particle systems. For this experimentation project we have chosen to implement
smoothed particle hydrodynamics (SPH), a physics-based �uid simulation method that is slowly becoming
more widely used in real-time applications such as games. Smoothed particle hydrodynamics is a mesh-free
Lagrangian method where the �uid consists of a set of discrete elements that are commonly called particles.
Dating back to 1977, smoothed particle hydrodynamics was originally developed as a probabilistic particle
method by Gingold and Monaghan [2] but also independently by Lucy [3]. Originally, its intended usage was
simulating astrophysical problems. Nowadays it is applied to many research problems involving incompressible
�uid �ows. Limited use of smoothed particle hydrodynamics in real-time applications � even until now � can
be accounted to its increased complexity in both implementation and computation. Especially the increased
computational costs are often considered a signi�cant bottleneck in real-time applications like games and
virtual reality systems where performance is a decisive factor, making SPH a less popular choice.

Implementations of Lagrangian �uids can either be mesh-based or particle-based, while Eulerian methods
always correspond to mesh-based solvers. The simulation domain for Eulerian methods is discretized by a
�xed mesh, meaning that the �uid properties are only calculated at discrete grid points of the domain. In the
Lagrangian view, the �uid is described as a discrete number of particles that `carry' the �uid quantities. Each
particle is speci�ed by a state list of properties, namely position, velocity, mass, force, pressure and density.
The particles are able to move freely through the entire domain, although they remain dependent on the acting
forces in the simulation scenario at all times. Particles have a spatial distance in the SPH-method, also called
the smoothing length, over which the particle properties are smoothed out by a kernel function. By summing
the relevant properties of all particles that lie in the range of the kernel, the physical properties of any particle
can be obtained. The performance of particle-based solvers highly depends on the e�ciency of implemented
computational algorithms and the actual number of simulated �uid particles.

5

2.2 Reference work

The work done for this experimentation project is based on the research conducted by Tianchen Xu, Wen
Wu, and Enhua Wu who published their work in the research paper `Real-time generation of smoothed-
particle hydrodynamics-based special e�ects in character animation' [1]. In this paper, the authors present
an approach to generate real-time smoothed particle hydrodynamics �uid �ows that are driven by character
motion. Their novel method involves the constraint of the �uid particles based on the geometric properties of
the character motion trajectory. To achieve their goals, the authors developed methods for e�cient placement
of particle emitters and tracking of character motion to predict particle velocities. In the following subsections
we elaborate on the main techniques and methods that we base our experimentation project on. The authors
also dedicate a large part of their work to the rendering of the �uid. In subsection 2.2.3 we will give a brief
introduction into the proposed rendering methods that we partly implement in our experiments. The main
focus however remains on methods that are relevant to the �uid behavior itself.

2.2.1 Particle Emitters

During the simulations, particle emitters are responsible for the emittance of new or existing particles. Particle
emitters serve as the starting position of a new particle that is emitted into the simulation scene. Positioning
the particle emitters can be handled in di�erent ways. The simplest approach for emitter distribution is
appointing the mesh vertices as the positions for the emitters. However, this approach is not ideal as vertex
layouts are often non-uniform, causing uncontrollable emission states. In the previous work by Xu et al. [4],
the vertices of the skinned character are unwrapped in to the UV space and stored in a position bu�er in order
to track the emitters. The main drawback to this approach is that di�erent UV atlases may be generated
in varying geometric scales for di�erent subparts of the mesh, leading to various emitter densities. In Xu
et al. [1] the proposed method of positioning particle emitters is based on per-triangle sampling to obtain
the correct distribution that uniformly divides the set of emitters over the entire virtual character mesh, or
subparts of the character mesh (such as arms or legs). Each mesh triangle 4ABC is aligned with the pair of
orthonormal tangent vectors that are constructed along the principal directions of the triangle centroid. By
parametrizing the vertices A,B and C into the tangent-aligned space (u, v), the triangle can be point-sampled
at a customized resolution. The sampled points are mapped into the normalized location space (α, β) of each
triangle domain. Sampled points whose calculated domain location values α and β lie within the range of [0, 1]
are regarded as valid emitter positions. Using this technique, combined with bilinear interpolation, emitter
positions become fast and easily updated. For details and formulas, please refer to section 3.1 of Xu et al. [1].

2.2.2 Particles and Motion Tracking

As mentioned earlier, particles are discrete elements that de�ne the mesh-free simulation �uid. Particles are
bound to their lifetime parameter, which indicates for how long the particle has existed in the simulation.
Upon exceeding the particle's maximum lifetime, the particle is typically removed from the �uid. However,
instead of removing and adding particles throughout the simulation it is more e�cient to relocate `expired'
particles to the position of a randomly selected existing emitter, thus handling both the addition and removal
of individual particles in one single operation. In the case of an animated mesh, particles that are added or
relocated are assigned an initial velocity based on the trajectory and motion of the designated emitter.

The reference paper uses a probabilistic method to estimate the new particle velocities based on the motion
and corresponding positions of the vertices of the character mesh. These vertices are tracked and recorded
over the current frame at time t and three historical frames at (t − ∆t), (t − 2∆t) and (t − 3∆t). The
motion of the emitter trajectory is then calculated based on the interpolated vertex positions that determine
the emitter positions at each time frame. The subsequently derived emitter trajectory curve is then used to
calculate the emission velocity of the spawning particle. The magnitude is obtained from the length of the
trajectory segment during interval ∆t, while its direction is based on the tangent vector of the trajectory curve.

6

2.2.3 Fluid Rendering

A large portion of the work proposed in Xu et al. [1] focuses on the visual representation of the �uid, in
other words how the �uid is rendered onto the screen. The technique used to render the �uid is fairly basic
and revolves around the well-known method of billboarding, which is essentially the use of 2D sprites in a 3D
environment such that the sprite is always facing the camera. Most 3D engines are able to render sprites faster
than conventional 3D objects, which results in a substantial performance advantage � especially when there
is a large amount of particles in the simulation that require rendering. Additionally, the work in Xu et al. [1]
extensively describes how to optimize the �uid rendering through the use of GPU bu�ers in order to achieve
optimal real-time rendering performance. This is not covered in the scope of this experimentation project.

7

3 Experiment Setup

This chapter gives a detailed description of the implementation details of the simulation framework we have
created to conduct our experiments. The implemented methods and techniques di�er - in several areas - from
the reference paper. In section 3.1 we describe the experiments in general and the main di�erences from the
paper methods. The altered implementations are generally better suited for conducting our bleeding e�ect
experiments in such a way that the desired experimental results can be achieved. Occasionally, techniques
mentioned in the reference paper involve highly optimized implementations that do not fall within the scope
of our project. Instead, we have implemented simpli�ed or adapted techniques to achieve similar e�ects
while preventing the need for the development and implementation of time-consuming methods. The setup
of the �uid simulation is subsequently described in detail in section 3.2., including the pipeline, work�ow
and important simulation variables. The description of the pipeline and work�ow includes more technical
background concerning the simulation framework and its internal workings. The simulation variables are
speci�c parameters that in�uence the �uid simulation during runtime. These variables are divided into two
categories; static variables that remain constant for all experiments and non-static variables that may vary
for each individual experiment, depending on achieving the desired e�ect. The general description and the
function of these variables are given in this chapter, the actual values and e�ects are described in chapter 4.

3.1 General Description

The techniques and methods used to achieve desired �uid e�ects are based on the assumption that, during
simulation runtime, the virtual character will emit �uid from its surface. Examples of this type of �uid emission
are bleeding and sweating, however the e�ect can be generalized to many forms of �uid emission. Placing
the particle emitters over the entirety of the character mesh surface can make the character appear to be
consisting of a certain �uid such as mud or slime. By limiting the placement of emitters to certain subparts
of the character mesh, it is possible to achieve speci�c e�ects. For instance, to simulate a crying e�ect,
the particle emitters should generally be placed near the eyes of the virtual character. An other example is
bleeding e�ects that can be accomplished by placing the particle emitters in a straight line, de�ning a deep
or super�cial cut. There are two main distinct factors that will have the largest impact on achieving certain
�uid e�ects: the properties of the material(s) that comprise the virtual character and the properties of the
�uid itself. With regard to the material properties, there are several variables that are important, such as
friction and energy restitution. The �uid-related properties range from well-known common parameters such
as compressibility and viscosity to more intricate �uid-related traits such as adhesion, which can be seen as
the tendency of dissimilar materials to stick to one another. The adhesion e�ect between particles and the
character surface plays an important role in most of the �uid e�ect methods implemented in the experiments.
The exact simulation variables that involve material properties, as well as full details and descriptions are
described further in subsection 3.3.2.

3.2 Implementaton Details

This section describes important implementation details of the di�erent aspects and methods that form the
basis of the experiments. Some of the implemented methods are closely related to techniques described in
the reference paper, such as particle spawning. Other methods di�er substantially from their counterparts in
terms of technique, implementation or both. Methods we developed for our experiments that involve collision
detection and additional �uid forces - such as adhesion - function as extensions on the original paper and aim
to improve the realism of the �uid e�ects by mimicking physical properties that exist in the real world.

3.2.1 Implementation Framework

The framework that we use for our experiments is built upon the existing framework called RAGE that is
developed speci�cally for Utrecht University. RAGE makes use of a mix of the programming languages C++
and Python. The rendering is done using OGRE [5], an open-source 3D engine that is freely available on
the internet. For the physics simulations we make use of the Bullet Physics Library [6] in conjunction with
Bullet-FLUIDS [7], an independently developed library aimed at the simulation of SPH �uids.

8

3.2.2 Virtual Character Mesh

For the virtual characters we use during our experiments, we use models provided by the OGRE engine. These
models consist of triangle meshes that can be animated by loading animation routines. We can discard any
attached animations so that we have static meshes at our disposal. For simpli�cation purposes we only use one
single virtual character per scene for each experiment. The virtual character is animated using a skeleton-based
approach where individual bones determine the animation pose. The visual representations of all used virtual
characters consist of triangle meshes, which are very commonly used in computer graphics. Using triangle
meshes allows us to retrieve the shared vertex data during each frame of the (skeletal-based) animation of the
virtual characters. The mesh vertices are used as reference points needed for storing initial particle emitter
positions during the initialization phase and tracking emitter positions during runtime based on the current
animation pose. Based on the tracked emitter positions, we calculate and apply initial velocities to particles
that spawn at emitters that are linked to animated characters.

3.2.3 Collision Shapes

Without any interference, the �uid particles will initially be able to penetrate the surface of the virtual character.
In order to be able to correctly apply our �uid methods, such as the adhesion force, we need to introduce
collision detection and resolution to our virtual character and �uid particles. A common approach in computer
graphics is to represent the virtual character using primitive collision shapes such as spheres and boxes for
the head, arms and legs. The reason behind this can be found in performance of the collision detection that
is much more e�cient when performed on primitive shapes. For our experiments we need a highly detailed
collision shape that approaches the original character mesh as close as possible. To achieve our goal we have
implemented the use of bounding volume hierarchy triangle meshes shapes as collision shape for the character,
which is a built-in functionality of the Bullet Physics Library. Triangle mesh shapes take the character triangle
mesh vertices as input to create a collision shape that is (nearly) identical in shape to the original mesh,
with added support of an accelerated search structure. The triangle mesh collision shape can be generated
at initialization of the framework and serialized to disk for future access, but this is only relevant for static
meshes. During the character animation the shape of the character mesh potentially changes, which requires
rebuilding the collision shape at each frame of the animation. The collision shape update process can act as
a severe performance bottleneck as we explain in subsection 4.2. Because collision shapes are responsible for
the physics interactions in our simulation, some parameters that deal with material properties (such as friction
and energy restitution) are applied directly onto the collision shape instead of the character mesh.

3.2.4 Emitter Placement

In contrary to the uniform particle emitter placement proposed in the reference paper, our framework requires
manual placement of particle emitters on the character mesh. This approach ensures the ability to experiment
with various di�erent scenarios in which the speci�c placement of emitters is crucial. The focus of our
experiments mainly lies on bleeding e�ects, which in turn are generally dependent on the type of injury that
is being reproduced. Each injury type displays di�erent �uid behavior and may require a speci�c tactic in
terms of emitter placement. For example, placing the particle emitters in a jagged line may indicate a bleeding
cut or tear, while centralizing emitters around one point can be used to simulate a puncture in the virtual
character which may have been in�icted by a foreign object such as a bullet. We focus on two types of injuries
for our experiments: (deep) cuts and punctures (such as bullet wounds). The emitter placement tactics used
for these speci�c injuries can be generalized towards visualizing other types of �uid e�ects, such as crying or
sweating. As mentioned, in the current framework the emitter placement depends on user input. Emitters
can be added throughout the simulation at any given location on the character mesh. This approach allows
for direct control over the location of emitters and is most adequate and suitable for our speci�c experiments
as opposed to automated emitter placement. However, to achieve various prede�ned �uid e�ects, developing
an automated emitter placement routine might prove useful in the future.

Spawning particles from emitters that reside inside the surface mesh would cause initial collisions between the
character mesh and the particles. This negatively a�ects the results due to the subsequent collision resolving
that applies an initial velocity to particles. To prevent this from happening, the particle emitters are placed
very close to the surface mesh. When the user picks a new emitter location, the closest surface triangle face is
determined using ray-casting. Using the three vertices that de�ne the picked triangle face, the normal vector
perpendicular to the triangle face is calculated. For the next step, the emitter is placed along the determined

9

normal vector, setting the minimal distance between the surface and the emitter to the particle radius. In
certain scenarios it may be desirable to supply an additional de�ned o�set to increase the distance between
the emitter position and the surface. This is especially useful when dealing with animated character meshes.
The default collision detection algorithms of Bullet Physics is not very suitable for detecting collisions between
moving triangle mesh collision shapes and other (primitive) rigid bodies such as the SPH-particles. The reason
for this is that the collision detection is generally performed on triangle vertices or edges due to performance
reasons. Since the particle size in our simulations is generally very small compared to the dimensions of the
character mesh, particles often do not collide with the triangle vertices and edges, leading to undetected
collisions. To remedy this, we can increase the particle size or reduce the scale of the character mesh. This
is highly undesirable when producing realistic �uid e�ects that interact with virtual characters, in which case
particles are signi�cantly smaller than the mesh itself. By specifying an additional emitter o�set, the particles
spawn further away from the mesh which increases the e�ciency of the triangle-particle collision detection. The
increased distance between the spawning particles and the mesh surface is hardly noticeable during animations,
making it a viable solution for our �uid e�ects that heavily rely on e�ective collision detection.

For storing the initial positions of particle emitters and tracking updated emitter positions we make use of
the barycentric coordinate system. The exact position of an emitter on a mesh triangle can be written as
the weighted sum of the three vertices that construct the mesh triangle (which was manually selected by the
user). For each emitter we store its three vertex indices and the three weights corresponding to each vertex.
At any given moment during the character animation we can calculate the current emitter position by using
the current vertex locations and the speci�ed weights. After determining the updated surface normal, all that
remains is applying the prede�ned emitter o�set.

3.2.5 Fluid E�ect Strategies

Creating natural looking bleeding e�ects depends on the placement of the particle emitters as well as the time
interval used to spawn particles. In our experiments we explore the possibilities to create two types of injuries
(cuts and punctures) by varying the emitter placement and particle spawning tactics. For the spawning tactics
we explore the option of using uniform and normal distributions to achieve gushing and continuous bleeding
e�ects. By combining both emitter placement tactics and spawning tactics we can create a set of bleeding
e�ects, such as gushing bullet wounds and steadily bleeding (deep) cuts that bleed heavily or slowly. For
details on the proposed methods and exact values, please refer to chapter 4.

3.2.6 Fluid Rendering

The �uid rendering methods are not the focus of this experimentation project. That said, the results we want
to achieve with the experiments are primarily judged by their visual appearance (e.g. the e�ects must look
convincing) and having a form of �uid rendering is a welcome - perhaps even mandatory - addition. In the
�eld of computer graphics there is still a lot of ongoing research regarding the area of realistic �uid rendering.
There are various approaches that describe how a �uid can be visualized adequately. Some examples of popular
�uid rendering techniques are dynamic billboarding and more recently screen space rendering.

In our experiments we make use of two rendering methods. The �rst method uses a primitive sphere mesh
where each particle in the �uid is represented by one rendered sphere. This method is substantially slower
than using sprites, however it is very suitable for our experiments to visualize and assess the particle behaviour.
The loss of performance due to rendering the 3D objects can be discarded for most of our �uid e�ects due
to the limited amount of used particles. An added advantage of rendering the particles using meshes is that
we can use basic shading to represent the type of �uid, such as glistening blood, which adds to the viewer
immersion. The second rendering method resembles that of the reference paper, where we employ billboarding
of sprites. This method is especially useful when dealing with large amounts of particles. Due to the scope of
our project we disregard the extensive work described in Xu et al. [1] that deals with rigorous optimization of
�uid rendering via GPU bu�ers which aims at achieving the highest performance possible.

10

3.3 Simulation Setup

To experiment with the �uid and the subsequent bleeding e�ects, we have built a simulation framework that
utilizes both Bullet Physics [6] and Bullet-FLUIDS [7]. For better understanding of our custom-built framework
we give a synopsis of the pipeline and work�ow used for our experiments, as well as a compact overview of
the implemented SPH-method from Bullet-FLUIDS. Bullet-FLUIDS supplies an extensive set of variables that
can be adjusted, however we discuss only the variables that are important to our experiments in section 3.3.2.

3.3.1 Pipeline and work�ow

Initialization Upon initializing the framework, we do most of the setup regarding our �uid simulations.
During this stage we initialize the physics world for the SPH �uid simulation and set all the �uid parameters,
which cannot be changed during runtime. For rendering purposes we also load the Ogre rendering engine
and setup the simulation scene consisting of a ground plane and directional lighting, with optionally a skybox.
Additionaly we load the correct character mesh and set its appropriate scaling, rotation and translation as
needed for the experiments. The last step involves building and setting the initial collision shape for our
character mesh, which does not change during runtime if the character remains static.

Runtime Most calculations happen during runtime when the �uid is being simulated. If applicable the
character animation and emitter positions are updated during each loop of the simulation. Each physics
update there are three additional internal stages in which we can perform calculations and updates. These
stages are referred to by Bullet-FLUIDS as pretick, midtick and posttick callback functions. As is already
clear from the naming convention, the pretick happens before a physics update, the midtick during the physics
update and the posttick happens after the physics update. In our simulation we only require the use of the
midtick and posttick. During the midtick the contacts between the particles and the character mesh are
updated. This is needed to have the most accurate contact points. During the posttick the SPH �uid has
been completely updated for the current simulation loop, after which we calculate all the additional forces,
such as adhesion, which will then be applied to the particles (as needed) in the next physics update. After
each physics update we also update the billboard (or mesh) positions of our particles based on the current
position of the SPH-�uid particles. Last but not least we update the current lifetime of all the particles that
are present in the simulation and spawn particles at their emitter when their maximum lifetime is exceeded.

The internal update loop for the Bullet-FLUIDS SPH-method is as follows (as speci�ed in the documentation):

1. Calculating and applying all applicable SPH forces based on the �uid composition;

2. Performing the collision detection and generating contacts;

3. Correcting velocity by applying collision response forces and other forces (such as gravity);

4. Updating the �uid particle positions.

User Input The placement of particle emitters depends on manual user input via mouse clicking. This is
also done during runtime, allowing the user to directly interact with the simulation. When a particle emitter is
added, we create additional particles in the simulation according to the number of particles per emitter. These
particles are not yet active and remain invisible until the �rst time they spawn at their designated emitter.
Emitters can be placed anywhere on the character mesh as the user sees �t. For performance reasons we only
allow a set number of emitters which is typically set to 50. The user can also pause and unpause both the
�uid simulation and the character animation seperately. This has no direct e�ect on the �uid simulation itself
but can be very useful when the user needs to take a closer look at certain occurences during runtime.

11

3.3.2 Parameters and settings

Below is a general description of the simulation parameters that are important for our project. Some parameters
have �xed values for all experiments, while others are adjusted in order to achieve better �uid e�ects. The
exact values for the parameter used in this project can be found in chapter 4, as well as an explanation on
how the values were acquired. We have seperated the �uid parameters into two sets: global parameters and
local parameters. Global parameters deal directly with the �uid simulation settings, while the local parameters
de�ne the settings and behavior of the SPH-�uid itself. All parameter values are set when the simulaton is
initialized and should not be adjusted during runtime as this may crash the simulation or cause undesired
errors leading to eratic �uid behavior.

Global parameters

Simulation Scale This is the scale at which the SPH density and forces are calculated, contrary to the
world scale at which the rigid body simulation, rendering and all other functions occur. By default, 1 meter
in the world scale is equal to 0.004 meters at simulation scale. Viceversa the conversion works the same, 1
meter at simulation scale is equal to 250 meters in world scale. The simulation scale is very useful for the
SPH simulation as setting SPH-parameter values does not require complex tuning to prevent the �uid from
exploding. Increasing the simulation scale makes the particles smaller. By default the simulation scale is set
to 0.004. For our simulations we increase the simulation scale to 0.16 to accomodate for our particle radius
that is 40 times smaller than the default setting (1 meter). In this report we refer to 1 unit being 1 meter on
the Bullet Physics scale. A particle with a radius of 0.025 units is equal to 0.025 meters in the physics world.

Timestepping To improve performance and stability the �uid simulation runs in a di�erent timestep than
the rest of the physics world, 3 milliseconds versus 16 milliseconds. We do not change this value as the default
setting results in a stable �uid simulation and is well suited for the �uid behavior in our experiments.

Local parameters

Energy restitution Causes particles to bounce of rigid bodies as they collide. Typically this value is set to
zero to prevent additional energy to be introduced into the simulation, which may cause the �uid to become
unstable. Using low values for the energy restitution should not cause any problems in general.

Boundary Friction Removes a fraction of the tangential velocity of a particle when it collides with a rigid
body. Setting this to a relatively high value can be used to mimic the e�ect of �uids - such as blood - sticking
to the virtual character when the adhesion force from our methods is not active.

Particle Radius Sets the radius of the (rigid body) sphere collision shape used for detecting the collisions
with other rigid bodies in Bullet Physics (such as the virtual character). The particle radius does not a�ect
the SPH calculations (like density) directly.

Viscosity De�nes the �uid's resistance to �ow. Higher viscosity makes it harder for the �uid to �ow. For
example, mud and slime have a high viscosity, while water and blood have a relatively low viscosity. Viscosity
also o�ers numerical stability to the simulation as it reduces particle velocities.

Particle Expansion This parameter expands the collision detection radius of particles to �nd objects that
are near, but not colliding with a individual particle. We use this in our experiments to �nd the closest point
on the character surface for particles that are subject to our adhesiuon force method.

Sti�ness Determines how violently the �uid reacts to density variations, de�ning the magnitude of the SPH
pressure force. For performance reasons, generally this value should be kept as high as possible to simulate
incompressible �uids. Generally, particles in (incompressible) �uids with low sti�ness have more neighbour
particles which results in more calculations.

12

4 Experiments

The experiments described in this chapter are conducted in order to determine appropriate implementation
methods and simulation parameters to achieve realistic �uid e�ects for predetermined scenarios. We will
use the perceived naturalness of the �uid behaviour to evaluate the e�ectiveness of our methods. Perceived
naturalness essentially describes how well the simulated �uid behaves in terms of realism compared to �uids
that exist in real-life environments. Our experiments are mainly focused on the simulation of bleeding e�ects,
both in terms of spawning techniques for the �uid � e.g. the �uid origin such as cuts and bullet wounds � as
well as the actual �uid behaviour as it interacts with the (animated) virtual character. The bleeding e�ects
generally require a limited amount of particle emitters to achieve the desired visual results, meaning that the
emitters are located at speci�c surfaces of the character mesh such as the arms or torso.

For all our experiments, the particle radius is set to 0.025 units. While it is theoretically possible to reduce
the radius even further, our tests show that performance greatly su�ers when the radius is set to values below
0.025 units. Most likely the cause for this lies in the fact that the simulation scale is directly tied to our particle
radius, which we explain in section 3.3.2. Even though our particles should ideally be smaller to visually match
real-life �uids, we can upscale our character model to maintain the illusion of small particles compared to
the virtual character, without a�ecting performance. Upscaling of the character mesh might not be ideal for
various reasons, however it is suitable for our experiments to obtain reliable results. The �uid sti�ness is set
to 0.5, where the default value is 1.5. In practice, reducing the sti�ness created less volatile �uid behavior
when used in our methods. Since blood has a higher viscosity than water, we used a value of 0.895 compared
to the default value of 0.5 to reduce the �owing capacity of our �uid. The friction is set to 0.25, which is the
default value of Bullet-FLUIDS. This value is already quite high but also best approaches the �uid behavior
we want to achieve using our adhesion force method, making for an overal consistent visual result. We keep
the energy restitution at 0, so we do not introduce any energy into the �uid simulation. The particle mass is
set 0.0386kg which is calculated from the sphere volume of the particles (3/4×π× particleRadius3) and the
approximate density of water (1000kg/m3).

4.1 Bleeding with Adhesion Force

Regarding simulation of basic bleeding e�ects, simply spawning particles at their designated emitter will overall
lead to less than convincing visual results. Fluids such as blood have the tendency to stick to other surfaces,
otherwise known as adhesion. While the character mesh is positioned below a �uid particle, the applied friction
between the surface and the particle is su�cient to simulate the �uid adhesion. Exceptions occur when particles
encounter sudden changes in the character mesh such as (sharp) edges. Depending on the current velocity
of the particle, this may result in detachment of the particle from the character surface, whereas in real-life
environments the �uid would continue to remain in contact with the character surface due to the adhesion
force. An example of this scenario can be seen in Figure 1. To avoid this unrealistic �uid behaviour we
introduce our method, referred to as adhesion force, that aims to remedy the lack of �uid adhesion. For the
methods described in this section we make use of static meshes since the lack of motion makes it far simpler
to assess the actual visual results. Please refer to section 4.2 for our experiments regarding animated meshes.

Figure 1: Lack of adhesion resulting in non-realistic �uid behavior.

13

The basic idea behind the adhesion force method is to calculate the distance that naturally occurs between
particles and the mesh and pushing the particles back in the general direction of the mesh surface when
the particles get separated from the mesh surface. More speci�cally, the adhesion force will be applied on
individual particles in order to push them in the direction of the closest point on the character mesh. The
magnitude of the adhesion force is determined by the actual Euclidean distance between the particle and the
mesh. Naturally, this Euclidean distance can be expressed as a 3D distance vector that is calculated by using
the 3D particle position vector and the 3D vector that de�nes the closest point on the mesh surface. The
individual 3D distance vector components (X, Y and Z) are used to determine the magnitude of the adhesion
force in each direction. For example, when a particle is positioned directly underneath the closest surface point,
the adhesion force will only be applicable in the Y-direction as the distances in the X and Z-directions will be
negligible. Since we have an active gravitational force in our simulation, we will not apply any adhesion force
in case the Y-coordinate of the closest surface point is lower than the Y-coordinate of the particle position.
In such cases, gravity will ensure that the contact between particle and mesh is maintained and the resulting
friction will supply the adhesion force which will mimic the real-life behaviour of �uids that come in contact
with other surfaces. Another condition for the application of the adhesion force is that at least one individual
component of the 3D particle-mesh distance vector exceeds the distance that we have set as the threshold
distance within the simulation. This threshold distance is referred to as the minAdhesionParticleDistance
and has a set value of 0.0001 units.

Figure 2: Expansion radius for particle (in
red). Blue and green are re-
spectively the last contact point
and closest surface point on the
mesh.

During each physics update of the simulation, the contacts between
the SPH-particles and the virtual character mesh are calculated and
updated based on the detected particle-triangle collisions. We man-
ually calculate the distance between the particles and the mesh by
subtracting the particle position vector from the mesh contact posi-
tion vector. This does not account for the actual particle radius �
the particle position is based on the centre of the particle � so we
also deduct the value of the particle radius variable. The resulting
distance that we store for our adhesion force calculations represents
the absolute distance from the particle perimeter to the mesh sur-
face (contact point). The acquired distance value is used to decide
whether the adhesion force should be applied and based on the dis-
tance value we also determine the magnitude of the adhesion force.
The closest point on the mesh surface is used as the direction for ap-
plication of the adhesion force. However, depending on the velocity
of a particle and the interval between physics updates, the last known
contact point might not give an accurate representation of the actual

closest point on the mesh. Instead of implementing our own algorithms to detect the closest surface point,
we can de�ne a value for the particle expansion radius variable. When set to a value larger than zero, the
particle expansion allows for the detection of particle-mesh collisions within an enlarged radius around the
particle. This means that, even as the particle is in fact no longer in direct contact with the mesh, we can
iterate through all contacts that occur due to the expansion radius. We then take the closest surface point
(in Euclidean distance) as the reference point for our adhesion force. For the graphical interpretation of the
expansion radius and how it works, please refer to Figure 2.

4.1.1 Functions and Distributions

As mentioned earlier, the magnitude of the applied adhesion force is a direct function of the Euclidean distance
between the closest surface point and a particle. For the experiments we have de�ned one linear function and
several di�erent (skewed) normal distributions that determine the exact adhesion force magnitude based on the
input distance. The general idea for all our de�ned functions and distributions is that for increasing distances,
the resulting magnitude will increase accordingly. The further a particle is removed from the mesh, the more
force needs to be applied to push the particle back in contact with the mesh in order to maintain the adhesion
e�ect. However, we also make the assumption that for every function and distribution there is a prede�ned
critical distance that serves as a limitation to prevent unrealistic �uid behaviour. When the separation between
particle and mesh becomes too great, the adhesion force is no longer able to successfully maintain the contact
between particle and mesh and the magnitude of the adhesion force will (rapidly) diminish. The breaking
point distance is a prede�ned value for our linear function and for the (skewed) normal distributions it is a
combination of the mean and variance combined. Below we will elaborate on the used linear functions and

14

(skewed) normal distributions including their intended e�ect and actual outcome.

Standard Linear Function

We start o� with a piecewise linear function to calculate the magnitude (Fm(d) of the adhesion force
based on the distance (d) between the particle and the closest point on the mesh. We de�ne variable
breakingPointDistance (dbp), which is the particle distance at which the adhesion force is at its strongest.
After the particle distance exceeds the breakingPointDistance, the adhesion force (quickly) diminishes. We
de�ne the maximum strength of the adhesion force as the variable maximumForce (Fmax), which we can
vary to control the overall strength of the adhesion force. In case of the diminishing force after reaching
breakingPointDistance, we also de�ne variable maximumDistance (dmax) at which the adhesion force
should be back at zero. By varying maximumDistance we can control the rate in which the adhesion
force diminishes. Formula 1 describes the piecewise linear function using a diminishing force after reaching
breakingPointDistance. First, we experiment with the linear adhesion force calculated using Formula 1.

Fm(d) =
{

(Fmax/dbp)× dbp if d ≤ dbp

(Fmax × (d− dmax))/(dbp − dmax) if d > dbp

(1)

Figure 3: Linear force using Formula 1, dbp =
0.025, maximumDistance = 0.05

First we de�ned the value of breakingPointDistance,
at which the adhesion force is at its strongest, equal
to 100% of the particle radius (=0.025 units), and
the maximumDistance to 200% of the particle radius
(=0.05 units). Simply put, this means that the magnitude
of the adhesion force increases and diminishes at an equal
rate. Initially, we kept the value for the particle expan-
sion radius at 0. Running experiments with these values
yielded results that were (visually) not very satisfactory
where particles fail to stick to the mesh. This can be ex-
plained by the fact that we use the expansion radius to
detect the closest point on the mesh surface for each par-
ticle. If we set the value for the expansion radius to zero,
the last known closest point on the mesh surface is equal
to the last contact point between the mesh and the par-
ticle. Depending on the actual particle velocity, the last
known contact point may be very di�erent from the actual closest point on the mesh surface, as shown in
Figure 2. This means that, when we calculate the distance between the particle and the last known contact
point, the particle potentially appears to be further away from the mesh surface than it actually is. Using this
'incorrect' distance - which is typically larger than the 'real' distance between particle and mesh - in the adhe-
sion force magnitude (Fm(d)) calculation is not ideal and causes the adhesion force to perform inadequately.
To remedy this situation we set the particle expansion radius equal to the maximumDistance variable (for
the piecewise linear function). This means that, until the distance between particle and mesh exceeds the value
of maximumDistance, the expansion radius of the particle always returns the closest point on the surface.
Subsequentially, we always calculate the correct adhesion force magnitude. Experimenting with the adjusted
value for particle expansion radius yielded far better results. However, we discerned another visual �aw, where
particles that are a reasonable distance away from the character mesh (and naturally no longer susceptible to
the adheshion force) were still attracted towards the mesh.

There are two ways to deal with this unnatural attraction phenomenon. First, we can (drastically) reduce
the maximumDistance variable such that it nears the breakingPointDistance, using values of 150% or
125% of the particle radius. This elimates most of the problem but, as we noticed during further experi-
ments, still causes some eratic �uid behavior from time to time. The visual results keep improving as we
reduce the maximumDistance, as particles are no longer unnaturally attracted towards the mesh. Once the
maximumDistance is nearly identical to the breakingPointDistance (≈101% of the particle radius) we
almost cannot discern any more improvement. This leads us to believe that eliminating the adhesion force
entirely after the particle distance exceeds the breakingPointDistance may yield the same results. After all,

15

it makes intuitively sense that once the particle reaches a certain distance from the mesh, the adhesion force
does not longer apply. To accomplish this, we reduce the adhesion force's magnitude to zero after the distance
reaches breakingPointDistance, which is shown by the piecewise linear function in Formula 2.

Fm(d) =
{

(Fmax/dbp) ∗ dbp if d ≤ dbp

0 if d > dbp

(2)

After running a few simulations, we determined that using the piecewise linear function from Formula 2 yields
better results compared to the one used in Formula 1. This supports our claim that removing the adhesion force
after the particle distance reaches breakingPointDistance improves the overall naturalness of the adhesion
force. An additional advantage of using Formula 2 is that we do not need any additional calculations once the
breakingPointDistance is reached, which should increase performance. Still, with our test con�guration the
actual gain in performance was negligable with no discernable change in framerate.

Another problem we notice, especially on steep surfaces, is that particles still get detached even though
we expect them to stick to the mesh. The most probable cause is that the strength of the adhesion
force is not adequate, which we can solve by either scaling the maximumForce variable or decreasing
the breakingPointDistance. Setting a lower value for breakingPointDistance 'pushes' the particles more
towards the mesh for lower particle-mesh distances. This reduces the potential particle distance in the next
physics timestep, requiring less force to maintain the adhesion e�ect. We have conducted some tests in
which we gradually lowered the breakingPointDistance from 100% particle radius (= 0.025 units) to 5%
of the particle radius (= 0,00125 units). Setting the breakingPointDistance to 25% of the particle radius
(=0,00625 units) yielded the best result for our simulations. Likely related to the physics timestepping, set-
ting the value lower than 25% starts to negatively a�ect the adhesion force, in which case the particles fail
to stick to the mesh. Judging the naturalness of the adhesion e�ect using the determined values for both
breakingPointDistance and maximumDistance, we still notice some scenarios in which the particles do
not stick to the mesh when we would naturally expect them to. By scaling the maximumForce from 1 to 5
during various test, we �nd that a value of 3 leads to the most convincing adhesion e�ect. This way particles
stick to the mesh as we expect them to, except at certain mesh features such as sharp edges or when the
particle velocity becomes too high. Figure 4 shows the results from implementing the piecewise linear function
from Formula 2, where the breakingPointDistance is set to 25% of the particle radius

Figure 4: Bleeding e�ect where the maximumDistance is equal to the breakingPointDistance .

(Skewed) Normal Distribution

The linear functions we use for the adhesion force already produce satisfying results, although sometimes the
particles react quite eratic to the adhesion force. This may be solved by using a smoother function for the
adhesion force magnitude, which we describe in this subsection. Especially smoothening out the magnitude
near the breakingPointDistance is likely to have a positive e�ect on the naturalness of the adhesion force.

Initially we determined a suitable normal distribution where themean is equal to the ideal breakingPointDistance
value (e.g. strongest adhesion force) we determined for the linear force function, placing the mean at 25%
of the particle radius. To determine the suitable value for the variance we start with 100% of the particle
radius, resulting in the function graph seen in Figure 5. Unlike the linear function, this results in a relatively
large adhesion force magnitude for particle distances starting at 0 units. Based on earlier assumptions that
we only want the adhesion force to a�ect particles that are no longer in contact with the mesh, this does

16

Figure 5: Normal distribution with µ=0.00625,
σ=0.025

Figure 6: Normal distribution with µ=0.00625,
σ=0.0018

not seem desirable. To test our assumption, we ran a limited number of simulations with the current normal
distribution to determine the outcome. As expected, the results show that the adhesion force performs well
with regard to making the particles stick, but the e�ect is far too strong and does not look natural in the
slightest. Even when scaling down the adhesion force by 20% to match the maximumForce (value of 3)
from our linear function, the e�ect still looks excessively unnatural. Having ruled out that the current setup
for our normal distribution is capable of producing a suitable adhesion e�ect, we re-introduce the dependency
that the adhesion force magnitude is obsolete for particle distances ≤ 0. We maintain the mean at its ideal,
original value, which automatically implies that, in order to meet the previously mentioned dependency, we are
forced to lower the variance value. The dependency is met when the variance is set to a value of approximately
0.0018 which is roughly 19% of the breakingPointDistance (see Figure 6). Simulations that we run with the
revised normal distribution look considerably more natural even though the adhesion force magnitude, looking
at the function graph, seems excessively large. Lowering the magnitude indeed has a large positive e�ect on
the naturalness as we set the magnitude as low as 1% and 2% of its original strength for the X+Y and Z
distance components respectively.

The normal distribution already shows great results in terms of how natural the bleeding e�ect looks. Yet,
we encounter the same �aw as with the linear force where the particles are unnaturally attracted towards
the mesh for larger distances. We account this to our normal distribution which is inherently symmetrical in
nature. There are two scenarios we explored to �nd a possible solution to this, with both scenarios revolving
around introducing skewness to our normal distribution. We can either introduce positive skew to make
the adesion force more e�ective for lower distances, or introduce negative skew which causes a (more) rapid
drop in the adhesion force magnitude after reaching the breakingPointDistance. We conducted further
experimentation with equal values for the mean and variance as the regular normal distribution. What we see
is that the adhesion force only has e�ect on larger distances, which would cause the adhesion force to fail
as we have seen earlier. After running several experiments we come to the conclusion that the best results
come from setting the skew (α) to a value of 5 and -5 for the positive skew and negative skew respectively
and by shifting the mean towards the left. For the positive skew the new value for the mean is 20% of its
original value, in our case 0,00125 instead of 0.00625. The new mean value for the negative skew is adjusted
to 68% of its original value: 0.00425 versus 0.00625. In addition to shifting the mean for the negative skew,
we have also found that slightly reducing the variance from 0.0018 to 0.001 (marginally) improves its results.
The new graphs for the mean and variance of both skewed normal distributions are shown in Figure 7. Since
the maximum possible magnitude of the negative skew function is approximately 1.5 times that of the positive
skew, it also requires 1.5 times more scaling than the positive skew function. Overall, we found the best results
where the scaling for the X, Y and Z components of the adhesion force lies between 100% and 67% for the
negative skew and between 50% and 67% for the positive skew. Finding the absolute 'correct' scaling however
is not a simple task since it heavily depends on the user preference with regard to the resulting �uid e�ect.

17

Figure 7: Unscaled positive and negative skew normal distributions with skewness of 5 and -5.

We have provided some images with results from both the negative and positive skew implementations (using
the suggested scaling) in Figures 8 and 9. Both approaches work well and produce natural natural bleeding
e�ects that, in practice, look almost identical. After running several additional simulations we �nd that
increasing the skewness for both the positive and negative skewed normal distributions does not visually
improve nor degrade the bleeding e�ects. As for picking the best suitable skewed normal distribution we �nd
that the negative skew is preferred over the positive skew due to the more sudden drop in magnitude after
reaching the breakingPointDistance. This property makes the negative skew normal distribution slightly
more robust under various conditions, but again, the di�erence is marginal.

Figure 8: Bleeding e�ect using a positive skewed normal distribution (µ = 0.00125, σ = 0.0018, α = 5).

Figure 9: Bleeding e�ect using a negative skewed normal distribution (µ = 0.00425, σ = 0.001, α = −5).

4.1.2 Neighbour Scaling

Originally we designed the neighbour scaling method to in�uence the magnitude of the adhesion force in the
Y-direction. The theory behind this is that we intended to mimic the increased gravitational pull on particles
that accumulate into a 'droplet' of �uid due to cohesion. As the droplet hangs underneath from a feature of the
character mesh, the combined mass of the particles would cause the adhesion e�ect to be less e�ective. The
intended implemention of the neighbour scaling is a fairly straight-forward method that, for each individual
particle that has adhesion force in the Y-direction, takes into account the presence of possible neighbouring
particles. We introduce a scaling factor by which we divide the Y-component of the adhesion force per particle
depending on the amount of neighbours. Intuitively we want the adhesion force to gradually diminish where
each neighbour does not contribute equally to the scaling factor.

Instead of using a linear function, we have chosen to use a (simple) polynomial function instead: the scaling
factor we will apply to the adhesion force Y-component (FaY) is

√
n, where n is the amount of neighbours.

Therefore we can say that FaY = FaY × (1/
√
n). As the count of neighbours grows, the total e�ect on

18

the scaling factor is gradually reduced. The maximum amount of neighbours that can exist for each particle
depends mainly on the �uid sti�ness. As mentioned earlier, we have set the �uid sti�ness to a value of 0.45,
leading to a maximum of approximately 30 to 40 neighbour particles.

Combining the neighbour detection method with the de�nitive (negative) skewed normal distribution, we see
no (substantial visual) improvements but the bleeding e�ects remained natural nonetheless (Figure 10). We
account this to the fact that the theory behind this method is based on an older implementation of the adhesion
force, where particles would excessively stick to the mesh. As we described in section 4.1.1 the adhesion force
produces natural and convincing results. By lowering the sti�ness value of the �uid, we already see that
�uid particles cluster together more and break away from the mesh more easily. In conclusion, the neighbour
detection method we describe here has not improved our experimentation results. If the �uid sti�ness is
increased up to a value of approximately 1.5, the particles have substantially more 'trouble' to clump together,
in which case the method could add to the visual realism. For our project we did not test this, as our results
would in�uenced dramatically by increasing the sti�ness by 300%. In the next section (4.1.3) we describe our
surface tension method, which is based on principles from our neighbour scaling method.

Figure 10: Reducing the adhesion force in the Y-direction using neighbour scaling.

4.1.3 Surface Tension

Cohesive forces between �uid particles are responsible for what is called surface tension, making individual �uid
particles cluster together into droplets. Each �uid particle is pulled equally in the direction of its neighbour
particles. In our experiments we have implemented a basic approach to mimic the e�ect of surface tension
(see Formula 3). When determining the neighbours (Np) of each particle p, as shown in section 4.1.2, we
also calculate the attractive force towards each neighbour particle n in the same loop. The attractive force is
calculated by taking the distance (dnp) between both particles and dividing it by its squared distance. This
way we automatically compensate for the actual distance between particles since the actual attractive force
diminishes as the distance between particles grows larger. For each particle the attractive forces towards its
neighbours are summed up as the surface tension force Ftp and stored seperately each loop. In order to
decrease and increase the overall strength of the surface tension, we also introduce a scalar variable α that we
apply to the total surface tension force of each particle.

Ftp = α
∑

n∈Np

dnp

||dnp||2
(3)

In Figure 11 some examples of the surface tension e�ect are shown with varying values of α. Overall, our
basic implementation of surface tension does not improve the bleeding e�ects much. The surface tension
e�ect is best visible in situations where many particles are gathered, for example in puddles. As for the
bleeding e�ects such as cuts and punctures (section 4.3) the di�erence is only noticable when the number of
neighbours of each particle. is high enough. Our method does not aim to minimize the �uid surface area, but
only applies neighbour attraction forces each simulation loop. As a result the particles never reach a stable
rest state, causing the �uid to continously move and deform (slightly) even when one would not expect it to
do so. Hence we can say that our surface tension method does improve the natural feel of �uid, but it is also
inherently �awed.

19

Figure 11: Examples of the �uid using surface tension, α = {0, 0.334, 0.667, 1}.

In succession to implementing our own surface tension method, the author added a surface tension technique
to the Bullet-FLUIDS library as well. This technique is based on work done byAkinci et al. [8]. In this paper
the surface tension force consists of two force components: cohesion force and curvature force. The cohesion
force forces particles to attract each other, similar to our own implementation. Additionaly, the curvature
force acts to minimize the surface area of the �uid by de�ning a scalar �eld. The curvature force pushes the
particles together to form the shape of a sphere (or ellipsoid), balancing out the curvature force. Figure 12
shows results from varying the Bullet-FLUIDS surface tension parameter as mentioned in section 3.3.2. For
our speci�c bleeding e�ects, the best results were acquired using a value of 0.25 for the Bullet-FLUIDS surface
tension. The �uid does not look considerably more natural when using the Bullet-FLUIDS implementation
for surface tension, as seen in Figure 11. But, unlike our own implementation, the �uid does reach a stable
rest state due to the surface area minimalization. The framerate su�ered considerably on a few occassions,
however the author indicated that the implementation is still in an experimental stage.

Figure 12: Examples of the �uid using Bullet-FLUIDS surface tension, α = {0.25, 0.5, 0.75, 1}.

4.2 Animated meshes and bleeding

Another part of our experiments is simulating animated meshes in combination with our bleeding e�ects.
Simply put, we can imagine a walking virtual character with a cut in its arm that is bleeding heavily. We
require an updated collision shape for the virtual character after each change in the animation state. Should the
character's arm move, we want the physics (i.e. �uid bleeding e�ects) to take that into account. Updating the
collision shape is fairly straightforward, as we supply the vertices of the character mesh to Bullet Physics (each
frame), resulting in an updated triangle mesh collision shape. The main problem here is that updating the
collision shape for each frame has a signi�cant impact on performance. We have noticed drops of over 200fps
for meshes that consist of over 30.000 vertices compared to building the collision shape once at initialization.
If the character mesh is kept fairly low-detail, by reducing the vertex count to approximately 1500 - 2000, the
performance is not a�ected as much. This is certainly something to consider when using animated meshes,
especially when working with real-time systems where every impact on the framerate counts.

During our experiments we found that there is another downside when working with animated meshes. As we
mentioned before, the collision detection between the triangle mesh and particles has its limitations. This is
not a problem for static meshes, as we can scale both particles and mesh such that the collisions are detected
adequately by the physics engine. When we run simulations where the character is animated, we immediately
observe that in many cases collision between the particles and mesh are missed, causing the particles to fall
through the mesh (tunneling). This is a serious problem that makes the �uid e�ects look far from natural.
After consulting the Bullet Physics forums and documentation, we must come to the conclusion that Bullet
Physics has no adequate support (by default) for collision detection between primitive shapes and animated
triangle meshes. The only partial solution we have found to this problem is to reduce the speed of the animation
and/or increasing the o�set for the emitter placement. When the mesh is animated more slowly or the initial

20

distance between spawning particles and the mesh is larger, the collision detection improves somewhat.

Based on the character motion, we also apply an initial velocity to particles as they spawn based on the
emitter positions. For each emitter we track its position in the current and previous timestep. By considering
the time that has elapsed since the last timestep and the relative distance between the current and historic
emitter positions, we can calculate the velocity of the emitter motion. When a particle spawns, we add the
(interpolated) emitter velocity to the particle's initial velocity. In most cases the particle's initial velocity is
zero, but this may not be the case when dealing with e�ects like gushing (see section4.5.1). Assigning initial
velocities to the particles (based on the emitter motion) improves the natural feel of our bleeding e�ects
considerably, removing most of the 'static feel' that occurs when particles spawn with zero velocity.

4.3 Di�erentiated �uid sources

In case of simulating bleeding e�ects, our �uid source would typically be some sort of injury in�icted upon
the virtual character. As we can generalize bleeding towards the more abstract concept of �uid emittance, we
can in fact de�ne �uid sources that can be applied to a multitude of virtual characters. While bleeding e�ects
would typically apply to human (or animal) characters that were injured, such e�ects could also be used to
simulate damage in�icted to inanimate objects. Examples range from an animated robot character with a tear
in its oil hose to a static punctured plastic bottle �lled with milk. As for the visualization of the �uid origin,
it holds true that many materials are susceptible to puncturing, tearing or cuts in general, disregarding exact
material properties that would normally apply in real-life scenarios. For our experiments we focus on de�ning
two types of di�erent forms of injury that act as the source of our simulated �uid: (deep) cuts and punctures.
In the following subchapters we will describe the individual sources and report how speci�c emitter placement
and timed particle spawning can convincingly contribute to the visualization of injuries that bleed.

4.3.1 Super�cial and deep cuts

To achieve the visual e�ect of super�cial and deep cuts, the emitters should be placed along a (curved) line
that represents the actual injury, as can be seen in Figure 13. The main importance when de�ning the cut
is that the distance between emitters is kept within boundaries. Placing the adjacent emitters too close will
result in particles that spawn (virtually) on top of each other, which negates the individual SPH-forces. When
the distance between emitters is too large, particles that spawn at the emitters will be too separated to apply
the attracting SPH-forces and the visual appearance no longer resembles the bleeding e�ect from a cut. If we
use the default spawning location of particles � i.e. at the exact position of the emitter � then the optimal
distance between the emitters should be roughly twice the particle radius. That way the spawned particles �t
next to each other which supports the idea of a cut that is bleeding.

Since particles have a limited maximum lifetime before they are relocated to their designated emitters, we
can in�uence the appearance of the bleeding e�ects by assigning starting lifetimes to the particles as they are
created at initialization. When simulating e�ects based on steadily bleeding cuts, we want the particles to
spawn at regular intervals. The interval is calculated by dividing the maximum particle lifetime by the amount
of particles per emitter. For example: if we have a maximum particle lifetime of 10 seconds and there are 100
particles per emitter, the spawning interval is (10/100 =) 0.1 seconds. If we combine this with our emitter
placement strategy for cuts, we are able to simulate a visually convincing e�ect resembling a cut, that is
steadily bleeding, on the virtual character. Depending on the severity of the injury (cut) we can increase the
particle count per emitter. This will decrease the interval in between particle spawns; if we take the previous
example and increase the particle count to 200 per emitter, then the spawning interval will be reduced to
10/200 = 0.05 seconds. There is no 'best value' for the spawning interval, due to many external in�uences.
Spawning particles too fast in combination with a high �uid sti�ness will cause the �uid to 'explode' and low
friction in combination with long intervals will not produce a coherent e�ect. In Figure 13 we show a simulated
cut that is steadibly bleeding.

21

Figure 13: Example of a bleeding cut simulation using 10 emitters and 30 particles per emitter.

4.3.2 Puncturing

Our puncture simulations aim at recreating the scenario of a foreign object penetrating the rigid body of our
virtual character, i.e. creating a puncture in its surface. There are numerous applications for simulating �uid
pouring out of holes in characters and/or objects. For our experiments we focus on gunshot-like injuries that
cause serious loss of blood and are in�icted upon our humanoid character. Unlike the injuries described in the
previous sections, the source of the bleeding e�ect - associated with puncturing - is exclusively concentrated
around the area where the surface has been penetrated. Initially our results show that the best method to
simulate the gunshot-like injury is using a small amount of emitters around the puncture location and spreading
them based on the actual diameter of the puncture. For now the exact placement of the emitters is user-
de�ned. The experiments based on puncturing assume that the spawning behaviour of the particles is less
continuous than with (deep) cuts. We aim to achieve results that approximate a form of gushing as opposed
to steadily streaming bleeding e�ects.

The requirement of the gushing e�ect we strive to accomplish is that we change the regular spawning intervals
to a form where the majority of particles is spawned in a short period of time. This leaves the remainder
of the particles to spawn over the remaining time interval. Similar to our adhesion force method, we can
employ the use of a (skewed) normal distribution that causes a spike in the particle spawning. By adjusting
the variance, we can control the length and severity of the overall gushing. Having a fairly large variance will
�atten the distribution where the particle spawning is more evenly spread. Low variance will cause the majority
of particles to spawn semi-simultaneously and thus creating a more violent gushing e�ect. Figure 14 shows
the results and visual di�erences using low- and high variance for two user-de�ned punctures. The maximum
particle lifetime is set to 10 seconds.

Figure 14: Puncture wound with low variance in the two left images and high variance in the right images.

22

4.4 Optimized Particle Spawning

When dealing with a (very) high amount of particles that spawn at one single position within a small timeframe,
particles have a high tendency to overlap each other. This is especially the case in the gushing bullet wound
scenario. When particles overlap in the simulation, there are two possible outcomes. Either the particles are
not susceptible to each other's SPH-forces or, when they do exact SPH-forces, the particles will push each
other away depending on the sti�ness parameter of the �uid. The sti�ness parameter of the �uid is set to
a value of 1.5 by default, which often causes the �uid to behave unnaturally and even, in extreme cases,
to explode violently if many particles (highly) overlap. In such cases, reducing the sti�ness value helps in
remedying most of the eratic �uid behavior. Reducing the �uid sti�ness too much might not be desirable
however, depending on the �uid e�ect and the previously acquired optimal combination of parameter values.

Figure 15: Bleeding e�ect using disk o�-
set (r = [0.025, 0.045]) posi-
tions for spawning particles.

To prevent (most of) the overlapping of particles that spawn (almost)
simultaneously, we apply an o�set to the emitter position that we use
as the new spawning position for particles. As mentioned before,
the emitters are placed on the plane that is perpendicular to the
mesh surface. The particle spawn o�set is calculated by using polar

coordinates. For each spawning particle a random value for angle ϕ is
calculated that lies between [0, 360] degrees, while omitting the value
of θ. This means that we pick the o�set position in a disk around the
emitter. The radius r of the disk is also de�ned by a random value,
however de�ning a suitable range for r is important for the resulting
e�ect. As the allowed range for the random value of radius r is
increased, more spread is introduced to the particle spawning. In case
of bleeding e�ects that deal with cuts, the calculated particle o�set
should generally be relatively small to ensure that particles remain
close to the emitter when spawning. On the other hand, increasing
the spread of the particles works well for the puncture bleeding e�ect.
By increasing both the range of radius r and the amount of particles per emitter, we can elimate the need for
multiple emitters that are placed close to each other in order to mimic the appearance of a puncture as seen
in Figure 15. The formula for determining the o�set vector is described in Formula 4. The o�set method can
be applied to any of our bleeding e�ects but is most useful and e�ective for the puncture e�ect.

Voffset = (r × sin(θ)× cos(ϕ), 0, r × sin(θ)× sin(ϕ)) (4)

4.5 Starting Velocities

By modifying the starting velocity of particles we control the behavior of the �uid, making it possible to
enhance our bleeding e�ects. The enhancing �uid e�ect we describe in this section is gushing, which can be
used for simulating heavy bleeding. The focus for the gushing e�ect lies on static meshes for our experiments
but, in theory, the gushing e�ect can be applied to animated meshes as well. We propose combining several
of our methods with our gushing e�ect to simulate realistic gushing bleeding e�ects.

23

4.5.1 Gushing E�ect

Figure 16: Closeup of the gushing e�ect.

In case of static meshes, we assign zero velocity as the initial particle
velocity when particles spawn. In case of animated meshes we take
the emitter displacement � compared to the previous frame � and the
resulting velocity. The naturalness of this technique is quite high when
dealing with animated meshes that show much movement. Due to the
velocity of both the mesh and the spawning particles it is hard for the
viewer to discern any particularly detailed e�ects, making it easier to
approximate `correct' �uid behaviour that looks natural. This is not
the case in scenes with static or slowly animated meshes where lack
of movement draws the attention explicitly to the visual aspect of the
bleeding e�ect. Especially scenarios where many particles are used to
simulate the bleeding e�ect, such as deep cuts and gunshot wounds,
have a unnatural static feel to them. Most wounds, as found in real
life, exhibit behavior where the �uid (blood) originates from the body
itself, and due to pressure and the incompressibility the �uid gushes out of the wound. This behavior is what
we base our gushing e�ect on (Figure 16). Contrary to wounds in general, our �uid does not originate from
within the character surface since we place the emitters directly onto the character surface in order to avoid the
initial collision resolution between particles and the collision shape. To mimic the gushing e�ect, we apply an
additional starting velocity to spawning particles. The gushing e�ect acts outwards from the wound, i.e. along
the surface normal that we update during each simulation loop. We de�ne a variable gushingMultiplier
that is used to control the magnitude of the gushing e�ect by acting as a scalar for the additional gushing
velocity. Getting the random direction o�set for the velocity is done using polar coordinates, similar to the
o�set method in section 4.4. We take a random value in the range of [0, 15] for angle θ to determine the o�set
direction vector that is added to the surface normal vector. Depending on the type of wound and the desired
e�ect, the spread of the gushing e�ect can be limited by reducing the allowed range for angle θ. Intuitively,
the gushing e�ect is naturally biased towards the surface normal due to the properties of actual wounds. As
such, restricting the angle θ to [0, 15] already results in a natural looking gushing e�ect for most cuts and
gunshot wounds. To simulate the appearance of increased pressure in the wound, i.e. intensifying the gushing
e�ect, the range for angle θ can be restricted further as well as increasing the value for gushingMultiplier.
The formula for determining the gushing o�set vector is described in Formula 5.

Voffset = (r × sin(θ)× cos(ϕ), cos(θ), r × sin(θ)× sin(ϕ)) (5)

We can combine the gushing e�ect with our other methods to create gushing gunshot wounds and heavily
bleeding gushing cuts. We can even combine the emitter o�set method with the gushing method, making
it easy to simulate gushing puncture wounds by placing one single emitter. In Figure 17 we show a gushing
puncture wound with varying strengths, leading to di�erent visual results.

Figure 17: Gushing e�ect using various strengths (0.25 in the two left images, 0.75 in the two right images).

24

4.6 Performance Analysis

Besides the visual aspects of the implemented �uid e�ects, performance is likewise important due to the real-
time focus of our experiments. In this section we review the impact of the discussed methods on performance
by taking a look at the performance of each method individually and also in combination with other methods.
The machine used for testing is equipped with a Intel® Core� i7-950 with a Nvidia® GTX770 graphics card.
The test are performed using billboard rendering for the particles to minimize the impact on performance. We
only consider the surface tension, adhesion force and gushing methods, since these methods have the largest
impact on performance. Our surface tension method relies on determining the neighbours of each particle,
meaning we do not require an individual assessment for the neighbouring method from section 4.1.2. In Table
1 we show the performance results for our individual methods. We do not consider the optimized particle
spawning method seperately, since determining the o�set position for particles (section 4.4) implements the
same polar coordinates technique as the gushing e�ect method, resulting in nearly identical performance for
both methods.Table 2 displays the performance results of four (useful) pairs of combined methods, such as the
adhesion force combined with surface tension. For each benchmark we let the simulation run for one minute
after which we determine the average framerate from Ogre's internal framerate counter. This gives us a clear
indication of the overall performance of our methods (combined and individually).

Table 1: Average fps performance results of individual simulation methods.

Method Number of emitters Particles per emitter Triangle Count Average FPS

Default setup (none)
10 100 21158 403

25 100 23278 138

Adhesion (normal distribution)
10 100 21158 235

25 100 23278 49

Surface tension
10 100 21158 372

25 100 23278 185

Gushing
10 100 21158 401

25 100 23278 230

Table 2: Average fps performance results of combined simulation methods.

Method Combination Number of emitters Particles per emitter Triangle Count Average FPS

Adhesion (nd) + surface tension
10 100 21158 217

25 100 23278 47

Adhesion (nd) + gushing
10 100 21158 310

25 100 23278 47

Adhesion (nd) + surface tension + gushing
10 100 21158 200

25 100 23278 47

Surface tension + gushing
10 100 21158 364

25 100 23278 118

25

The adhesion force is the method that has by far the most impact on the performance, however the method
could be optimized more using GPU bu�ering techniques from Xu et al. [1]. We have also optimized our
framework by implementing lookup tables for the (skewed) normal distributions. We sample the normal
distributions at regular distance intervals and store the calculated magnitude. During runtime we consult the
lookup tables for the actual mesh-particle distance using linear interpolation on the two magnitude values that
lie closest to the relevant distance. Notice that sometimes the adhesion force performs better in combination
with other methods. While this seems illogical, this is most likely caused by having less 'sticking' particles for
the adhesion calculations. For example, when the gushing e�ect is active the particles are 'pushed' away from
the mesh. In that case the distance between the particle and mesh becomes too large more often, resulting
in less adhesion force that needs calculating. Obviously, this increases the simulation performance. The other
methods that improve the bleeding e�ects, such as surface tension and gushing, have considerably less impact.
However, performance in general decreases quickly as the amount of particles is doubled.

26

5 Conclusions

Based on the results from the experiments, we can conclude that smoothed particle hydrodynamics (SPH)
are (very) suitable for simulating �uid combined with virtual characters. We were able to achieve convincing,
natural looking bleeding e�ects but this requires implementing several methods that are complementary to the
SPH-method. Most of the methods we introduced in this experimentation project substantially improve the
visual quality while being reasonably simple to implement. The adhesion force method delivers the biggest
improvement for simulating �uids that stick to other surfaces, such as blood. It also has the greatest impact on
the simulation performance due to the amount and complexity of the calculations done during each simulation
loop. Implementing optimizations such as the lookup tables are therefore mandatory to make the adhesion
force method suitable for real-time applications. We were able to achieve realistic bleeding e�ects on static
meshes by combining the adhesion force with both our emitter placement and starting velocity strategies,
without greatly impacting the simulation performance. For animated meshes the results are less satisfying
regarding both performance and immersion. The biggest visual boost for our bleeding e�ects in combination
with animated meshes would come from improving the collision detection so that the particles are no longer
'tunneling' through the moving mesh. Rebuilding the collision shape every animation frame has the largest
impact on the framerate. Introducing an optimized (or di�erent) method that creates the collision shapes
more e�ciently would certainly bene�t the overall performance.

In conclusion, our opinion is that smoothed particle hydrodynamics can be put to good use for simulating
bleeding e�ects, elimiminating the need for manual animation or unrealistic traditional particle systems. This
could save both time and e�ort for developers of games and virtual reality systems and could even bene�t
movie animators that work with computer generated graphics. While the focus for this project lies on bleeding
e�ects, our methods can also be applied for various other applications such as crying or sweating. The main
problem we would like to point out is the potential unstability of SPH-�uids. Creating stunning visual e�ects
requires a lot of parameter tweaking to get the desired e�ects without volatile �uid behavior. Still, using a
physics-based �uid for bleeding e�ects certainly has great potential in various applications. SPH has great
potential - despite its �aws - and with recent technological hardware advances we expect that in the near
future SPH will become a much more popular choice in real-time �uid simulation than it has been previously.

27

6 Future Work

The most interesting future work is to experiment with full body �uids. So far we have only experimented with
�uid e�ects aimed at certain subparts of the character mesh. Using the right techniques, our methods could
also be used to represent virtual characters that completely consist of a �uid such as mud or slime. Foremost
this would require emitter placement that is (more or less) evenly distributed over the entire mesh, similar to
the work done by Xu et al. [1]. The consequence is that there will be a (very) large number of particles present
in the �uid. Because of the adhesion force performance, as it stands, it might not be feasible to have the
full body �uid and adhesion e�ects at the same time. A possible solution could be to reduce the amount of
emitters/particles and increasing the size of the billboards that represent the particles, even though it is likely
that the visual quality would su�er. Other useful future work would involve optimization of the used methods
such as the adhesion force. Building the collision shape is one of the biggest bottlenecks for using animated
meshes, so either improving this process or �nding a di�erent technique could also prove very valuable.

28

References

[1] Tianchen Xu, Wen Wu, and Enhua Wu. Real-time generation of smoothed-particle hydrodynamics-based
special e�ects in character animation. Computer Animation and Virtual Worlds, 2013. ISSN 1546-427X.

[2] R.A. Gingold and J.J. Monaghan. Smoothed particle hydrodynamics - theory and application to non-
spherical stars. Monthly Notices of the Royal Astronomical Society, 181:375�389, November 1977.

[3] L. B. Lucy. A numerical approach to the testing of the �ssion hypothesis. Astronomical Journal, 82:
1013�1024, December 1977. doi: 10.1086/112164.

[4] T-C Xu, WWu, and E-HWu. Real-time character-driven motion e�ects with particle-based �uid simulation.
In Proceedings of the 26th International Conference on Computer Animation and Social Agents, CASA

'13, pages 7:1�7:10. Sabanci University Press, May 2013.

[5] Ogre - open source 3d graphics engine. URL http://www.ogre3d.org.

[6] Bullet physics library. URL http://bulletphysics.org/.

[7] Bullet-�uids for bullet physics 2.81. URL https://github.com/rtrius/Bullet-FLUIDS.

[8] Nadir Akinci, Gizem Akinci, and Matthias Teschner. Versatile surface tension and adhesion for sph �uids.
ACM Trans. Graph., 32(6):182:1�182:8, November 2013. ISSN 0730-0301.

29

